UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

0580/0581 MATHEMATICS

0580/01, 0581/01 Paper 1 (Core), maximum raw mark 56

0580/02, 0581/02 Paper 2 (Extended), maximum raw mark 70

0580/03, 0581/03 Paper 3 (Core), maximum raw mark 104

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the June 2004 examination.

	maximum	minimum mark required for grade:				
	mark available	Α	С	E	F	
Component 1	56	-	41	28	23	
Component 2	70	58	38	26	-	
Component 3	104	-	77	50	39	
Component 4	130	93	57	37	-	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t. b.o.d.	Anything rounding to Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
f.t.	Follow through
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
	Work followed through after an error: no further error made
_	Work followed through and another error found
*	Indicates that it is necessary to look in the working following
	a wrong answer

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01

MATHEMATICS

Paper 1 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	1

1		39	1	
2		842	1	Ignore any or no units after answer. Allow 84200cm.
3	(a)	$\frac{3}{4}$ final answer	1	
	(b)	$\frac{7}{100}$ final answer	1	
4	(a)	49	1	
	(b)	31	1	
5		4.5(0)	2	M1 for 18 x 25 or 450 or 4m 50cm seen (18:450 and 18:4.5 also indicate M1)
6		$4\frac{1}{2}$ or $\frac{9}{2}$ or $\frac{18}{4}$ or $4\frac{2}{4}$	2	M1 for $\frac{9}{4} \times \frac{2}{(1)}$ seen.
				Allow SC1 for 4.5 or $4\frac{1}{2}$ oe seen with incomplete or
				decimal working. $(\frac{9}{4} \text{ or } \times \frac{2}{(1)} \text{ oe or } 2.25 \div 0.5)$
				Answer only, no working, is 0.
7		141.5, 142.5	2	1 for each answer SC1 for both values correct but wrong way round.
8		2x(2y – 3z)	2	M1 for $2(2xy - 3xz)$ or $x(4y - 6z)$ or $2x$ (wrong expression) Allow omitted last bracket.
9		190.48 or 190.47 or 190	2	M1 for 200 ÷ 1.05, implied by 190.() Not allow 190.5 or 190.4 or 190.00 for 2 marks
10	(a)	0	1	(a) and (b) reversed–no marks
	(b)	2	1	

(18)

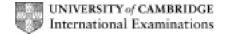
			('/	
11	(a)	110°	2	B1 for Q = 35° s.o.i.(can be on diagram) 70 seen implies B1.
12	(a)	3	1	
	(b)	0	1	
13	(a)(i)	200 40	1	
	(a)(ii)	5f.t.	1	Only f.t. for simple mental calculation. E.g. $220 \div 40 = 5.5$ or $200 \div 30 = 6$ or 7 or $6\frac{2}{3}$ or 6.6 or 6.66 etc
	(b)	5.6	1	
14		B or 2 nd – dependent on M1, M1	3	M1 for a correct method for 1 bottle, implied by figs 615 or 652 seen or figs 1625 or 153 seen. M1(dep) for a complete correct method with consistent units. (Implied by a correct pair of values seen. Alt. Method completely correct is M2
15		2.65 or 2.649()	3	M1 for sin $32^{\circ} = \frac{h}{5}$ M1 (dep) for $h = 5\sin 32^{\circ}$ (2.6implies M2 provided no obvious scale drawing, which is zero) Other methods can be split similarly. From grads 2.409 or radians 2.757 implies M2

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	1

16	(a)	13	2	M1 for -3 + 16 seen
	(b)		2	M1 for a correct step, for clearly dividing by b or $y - a$ seen.
17		Bar Chart	4	S1 correct scale and equal width bars. (Lost for vertical lines drawn) B2 all bars correct height or B1 for any 2 bars correct height. Dots or line graph is B0. L1 correct labels.
18	(a)	\$4.5(0)	2	M1 for 50 x (0.25 or 25) or \$12.5(0) or 1250 seen, or $0.25 - 8 \div 50 = (0.09)$ or $25 - 800 \div 50 = (9)$
	(b) *	56.25 or 56 or 56.3 or 56.2	2f.t.	M1 for their (a)/8 x 100 or their profit for 1 orange × 100 their cost for 1 orange
19	(a)	2826 to 2828 or 2830	2	M1 for $\pi \times 30^2$ or $\pi \times 0.3^2$ and method not spoilt.
	(b) *	226.(080) to 226.(240) or 226.(4)	2f.t.	M1 for his (a) × 80 s.o.i. or correct f.t. answer seen in cubic centimetres.

 $\binom{16}{16}$

			_	
20	(a)	9	2	M1 for 31 + 5 or $\frac{31-5}{4}$ or $x-1.25 = 7.75$
	(b)	14	2	M1 for $4y - 20 = 36$ or $y - 5 = 9$ or better.
21	(a)	00 15 or 12 15am Ignore am added to 00 15	1	Allow a clear time in words. E.g. 15 minutes after midnight. Not 12 15 or 24 15
	(b)(i) *	7 h 30min Allow $7\frac{1}{2}$ or 7.5 hours	1f.t.	f.t. their (a)
	(b)(ii) *	749.(33) f.t.	3f.t.	B1 for their 7.5 or $7\frac{1}{2}$ or their 450 minutes and (finally) multiplied by 60 used . M1 for 5620/their time (independent of B1) (f.t. dependent on B1 and M1) [Watch for 5620 ÷ 7.3 = 769.(86) implies B0 M1.]


INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02
MATHEMATICS

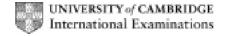
Paper 2 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	2

	stion nber	Mark Scheme		Notes
1		3h 20m	1	
2		10.9	1	
3		$0.5^3 < 0.5^2 < \sqrt{0.5}$	2*	M1 for 0.25, 0.7 and 0.125 seen matched
4		$\frac{1}{2}p^{20}$	2	B1 $\frac{1}{2}$ or p^{20}
5		24	2*	M1 $x/4 = 6$ or $x - 32 = -8$ seen
6		6375 6385	1, 1	B1 correct but reversed
7		7	2*	B1 for one of -7/8, -1/8, -14/16, -2/16, -0.875, -0.125
8	(a)	4	1	
	(b)	4	1	Not 90 or $\frac{1}{4}$ turn
9		450	2*	M1 for 3000 x 7.5 x 2/100
10	(a) (b)	80000 8 x 10 ⁴	1 1√ 3*	8 x 10 ⁴
11	•	x = 8 y = 1	3*	M1 double and add/subtract consistently A1 A1 or M1 rearrange and substitute correctly
12		50, 5, 3	1, 1, 1	711 G. III Todirango and odpolitate correctly
13		$\sqrt{\left(\frac{c-e}{k}\right)}$	3*	R1 , R1 for any 2 correct steps moving e , k or $$ Allow $d^2 = (c - e)/k$ to score R2 as a single step
14	(a)		1	Arc must not continue outside rectangle. Radius of arc 4 cm \pm 1 mm. Ignore shading
	(b)	12.6	2*	M1 for $\frac{1}{4} \times \pi \times 4^2$
15		4	3*	M1 Area factor or ratio 9 M1 LSF 3
16	(a) (b)	a + c a – c or –c + a	1 1	
	(c)	$-\frac{1}{2}a - \frac{1}{2}c \text{ or } -\frac{1}{2}(a+c)$	2*	M1 A0 for answers simplifying to these seen
17		X	2* 2* 1	M1 2 arcs centre B and D, line drawn A1 M1 construction arcs on AD and CD and centre these for the bisector, line drawn A1 Dependent on at least 1 + 1 in part (a) SC1, SC1 If accurate and no construction arcs
18	(a) (b)	114 (0)47 cao	2* 3*	 M1 78² + 83² M1 for finding one angle by trigonometry correctly M1 for clearly identifying bearing angle Scale drawing and answers with no working score zero
19	(a)	11	1	
	(b)	x + 2	2*	M1 $\frac{2(x+1)}{2}+1$
	(c)	3	2*	M1 for explicit $g(1)$ or $g^{-1}(x) = \frac{x-1}{2}$
20	(a)	3(2x-y)(2x+y)	2	B1 $(6x - 3y)(2x + y)$ o.e.
	(b)	$\begin{array}{cc} 3(2x - y)(2x + y) \\ \textbf{(i)} & x^2 - 6x + 9 \end{array}$	2*	M1 correct method
		(ii) $p = 3$ $q = 1$	2	B1, B1

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	2

21	(a)	1.8	2	M1 convincing gradient calculation or use of $a = (v - u)/t$
	(b)	450	2*	M1 for 20 x 18 + $\frac{1}{2}$ x 10 x 18
	(c)	13	3*	M1 for finding total area under graph ((b) + 135) dep M1 for ÷ 45
				If the vertical scale is consistently misread then M4 A0 is available
22	(a)	BA or (iii)	2*	M1 checking order of all 4 matrices correctly
	(b)	$ \begin{pmatrix} 38 & 0 \\ 0 & 38 \end{pmatrix} $	2	M1 either column or row correct
	(c)	$ \frac{1}{38} \begin{pmatrix} 4 & 6 \\ 5 & -2 \end{pmatrix} \text{ or } \begin{pmatrix} 4/38 & 6/38 \\ 5/38 & -2/38 \end{pmatrix} $	1	$\begin{pmatrix} 2/19 & 3/19 \\ 5/38 & -1/19 \end{pmatrix} \text{ or } \begin{pmatrix} 0.105 & 0.158 \\ 0.132 & -0.0526 \end{pmatrix}$
		TOTAL	70	


INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 103

SYLLABUS/COMPONENT: 0580/03, 0581/03
MATHEMATICS

Paper 3 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	3

FINAL MARK SCHEME

0580/3

June 2004

Question Number	Answer	Marks	Comments	Total
1 a i	51	1		
ii	49	2	M1 for clear evidence of ranking	
iii	46	2	M1 for total/10, allowing errors in addition	
b i	20 60 160 80 40 (360)	2	M1 for evidence of ×4 oe seen or SC1 for 3 or 4 correct	
ii	correct pie chart (±2°)	2	5 sectors only. Any order. Or SC1 for 3 or 4 correct or ft correct	
	correct labels	L1	4 or 5 correct or ft correct	
iii a	4/9 oe	1	allow (0).44,44 ⁻ %, but not 0.4	
iii b	1/3 oe	2	M1 for <i>their</i> ((D+E)/T) from their table. Can be implied. For both parts –1 once for incorrect notation eg 4 out of 9, 1:3, 4 in 9 etc 0.3 ww is zero	
				13 13
2 a	9	1		
b i	6	1		
ii	18	1√	ft for 3× their bi (not strict ft)	
c i	(0).6	2	M1 for 3× 0.2	
ii	30	2√	M1 for <i>their</i> bii/ci (not strict ft) or 2×3/0.2	
d	(0).02	2	M1 for $2\times0.1\times0.1$ oe SC1 for fig 2	
e	4.8(0) 9(.00) 14.4(0) 2.1(0)	4	B1 for each	
	30.3(0)	1√	ft from 4 total costs	14
				14
3 a	7 8 4 -1	3	B2 for 3 correct or B1 for 2 correct	

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	3

b	13 correct or ft correct points (±1/2 a square)	P3√	P2√ for 11 or 12 correct or P1√ for 7 to 10 correct	
	Correct curve cao	C1	reasonable parabola shape, no straight line segments, pointed maximum etc	
С	- 2.7 to -2.9 2.7 to 2.9	1 1		
d	-1 5	1 1		
e	correct line drawn -3≤x≤3	2	M1 for incomplete line or freehand line or both their (in)correct points correctly plotted	
f	2	2	M1 for attempt at $\Delta y/\Delta x$ from their straight line graph	
g	-3 1	1 1	-1 if y values given as well	17
				17 17
4 a	120	1		
b	70	2	M1 for <i>t</i> +2 <i>t</i> +75+75=360 oe 3 <i>t</i> and 210 implies M1	
c i	130 oe (eg 180–50)	2	M1 for angle sum of triangle(=180) used	
ii	100 oe (eg 360–100–160)	2	M1 for angle sum of quadrilateral(=360) used	
iii	x=70 and y=30	3	√M1 for attempted elimination of one variable (be generous) A1 for each answer. no ft. correct answers reversed implies M1A1	
				10 10
5 a	(0).2	1		
b i	Tangent and radius mentioned	1	or described.	

Page 3	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	3

ii	8 cao	1		
iii	art 1.78	3	M1 for (<i>their</i>) 8 ² –7.8 ² oe M1(indep) for square root indicated or used 1.77 ww implies M2. 1.8 ww is zero	
iv	6.9 (2 sig figs only)	3√	ft for answer correct to 2 sig figs (not strict ft) (3.9×theirbiii) or M1 for 0.5×7.8×their biii + A1 for answer to more than 2 sig figs	
				9
6 a i	translation cao	B1	or translated	
	10 -2	B1 B1	-1 for incorrect notation or a description SC1 for both answers correct but inverted	
ii	rotation or turn	M1		
	centre the origin oe	A1		
	(+) 90 (anticlockwise)	A1	allow quarter turn for M1A1	
b i	correct reflection drawn	2	SC1 for reflection in <i>x</i> -axis	
ii	correct enlargement drawn	2	SC1 for scale factor 2, wrong centre	
				10 19
7 a i	pentagon	1		17
ii	540	2	M1 for 3×180, or 5×180–360 or (180–360/5)×5 or 6×90	
iii	108 cao	1	01 (100 500/5)/5 01 0/70	
b i	110 or $x=70$ or $y=20$	M1	may be on diagram	
ii	completion art 50.2	A1 2	Beware of circular arguments M1 for tan(⁻¹) and 120/100	
iii	120(.2)	1√	ft for 70+ <i>their</i> bii	

Page 4	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	3

iv	300	1√	ft for 180+ <i>their</i> biii	
			−1 for answers reversed	
				10 10
8 a i	6 (±0.1)	1		
ii	10	2√	$\sqrt{\text{SC1 for } 10^n \text{ where } n \text{ is an integer. (ft } 60/their \text{ ai)}}$	
iii	73 to 76	1		
b	both lines drawn (±0.1 cm)	2	B1 for each line. Ignore any curves at ends, lines must be at least 5 cm long. Allow dotted etc	
c	mediator drawn (±0.1cm and 1°) with two pairs of arcs	2	B1 for correct line with no arcs or correct arcs with no line	
d	complete circle, radius 4 (±0.1) cm drawn, centre C	2	SC1 for incomplete circle	
e	L marked correctly	1	be convinced	
				11
9 a i	12	1		
ii	20	1		
iii	2 <i>n</i> +2 oe	2	M1 for $2n + k$ where k is an integer	
bia	20	1		
bib	25	1		
ii	48	2	M1 for 12 seen (as diagram no.)	
iii	100	2	M1 for 10 seen	
				10 21

TOTAL MARKS 104

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	4

O1(a)(i) 60 y 120	est ansilt
$\mathbf{Q1(a)(i)}$ $\frac{60}{100}$ x 120 o.e. $\mathbf{M1}$ Implied by 72 seen and \mathbf{m}	ioi spoiii.
(\$) 132 c.a.o. A1 ww2	
(ii) $\frac{\text{their(a)(i)}}{120} \times 100$ o.e. M1	
120 $\sqrt{\mathbf{ft}}$ their (a)(i) x 100	
110(%) Final answer, but may be $A1 \sqrt{}$ 120	
explained using 10. Sc1 for 10 or their extra	% <u>or their(a)(i) – 120</u>
x100	
(b) $\frac{159.10}{1000}$ (x100) o.e. M1	120
	equates 159.10 with 86%
(\$) 185 c.a.o. A1 provided it is not contrad	licted later.
(c) 156×52 o.e. M1 ww2	
169 Alt. Method <u>156</u>	$= \underline{x}$ o.e.
48(cm) c.a.o. A1 156+169	<i>x</i> +52
(d)(i) 11 x 36 o.e. M1 ww2	
Method not spoilt by also	o doing <u>9</u> x 36
19.8(km) c.a.o. A1	20
(ii) 36 x <u>23</u> o.e. M1 ww2 Condone 19.8:16.2	16.2:19.8 is M1A0
2	
414(km) c.a.o. A1 ww2	12
Q2(a)(i) $p = 9$ $q = -3$ $r = 9$	back from graph.
(ii) Scales correct S1 \sqrt{x} from -3 to 4. y to according to 4.	ommodate their values.
Their 8 points plotted correctly (1mm) $P2 \sqrt{P1} \sqrt{\text{for 6 or 7 of their}}$	
Reasonable curve through all 8 of their Condone ruled line for x	
points (1mm tolerance) $C1 \sqrt{\text{ ft provided correct shape}}$	
(iii) Tangent drawn at $x = -1$ on curve -3.5 T1 Or a parallel line drawn.	
to -2.5 Condone fractions B2 If B2 not scored, give B1	
(b)(i) $u = 6.33$ or better $v = 6$ $1+1$ Allow $u = 19/3$	
(ii) Their 6 points plotted correctly (1mm) $P3 \sqrt{P2}$ for 5 correct ($\sqrt{\ }$).	P1 for 4 correct $(\sqrt{})$
Reasonable curve through all 6 of their Condone ruled line for x	` /
points (1mm tolerance) $C1 \sqrt{ ft}$ provided correct shape	
C1 v reprovided contect shape	
(c)(i) $x^2 - x - 3 = 6 - x^3/3$ o.e.	
to $x^3 + 3x^2 - 3x - 27 = 0$ E1 At least 1 intermediate st	en and no errors seen
(ii) $\begin{vmatrix} to x + 3x - 3x - 27 = 0 \\ 2.3 \text{ to } 2.7 \end{vmatrix}$ c.a.o. $\begin{vmatrix} E1 \\ B1 \end{vmatrix}$ Not coordinates	18
Q3(a)(i) Median 36 to 37 (cm) B1	10
(ii) IQR 19 to 21 (cm) B2 Sc1 for 45.5 to 46.5 or 2	5 5 to 26 5 saan
(iii) Evidence of using 146 (approx) 19 to 21 (cm) B2 Sc1 101 43.3 to 40.3 or 2	J.J 10 40.J SCCII.
32 to 33 (cm) A1 ww2	
(iv) 275 to 281 A1 WWZ Sc1 for 84 to 90 seen	
(17) 2/3 to 201 D2 SC1 101 04 to 90 seen	
(b)(i) $350 - 303$ B1	
365 –350 B1	
(ii) Midpoints 5.15.25.35.45.55.65 M1 At least 6 correct s.o.i.	
	r midnainta ±0.5
Zix attempted (15005)	g mapomis ±0.5
\[\frac{1}{2} \frac{1}{3} \fr	
1 1 1 1 500	4520551
	452055]
35.8 or 36 or 35.79 www A1 www4 [35.79	•
(c) 2.9 (cm) A1 www4 [35.79] (a) B1 ISW subsequent roundin	g to 3 or 5 once seen.
35.8 or 36 or 35.79 www A1 www4 [35.79	g to 3 or 5 once seen.

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	4

Q4(a)	$(AC^2 =) 9.5^2 +11.1^2 -2x9.5x11.1\cos 70$	M2	Allow M1 for $9.5^2 + 11.1^2 - AC^2 = \cos 70$
Q+(a)	(AC -) 9.3 +11.1 -2x9.3x11.1c0s/0	1412	$\frac{2 \times 9.5 \times 11.1 - AC}{2 \times 9.5 \times 11.1}$
	square root of correct combination (141.3279) or 11.888		Dep. on previous M2. Must be convinced that errors are due to slips <u>not</u> incorrect combination.
	11.9 (cm)	A1	www4 Scale drawing gets M0A0.
(b)	(Opp. angles of) cyclic quadrilateral (add to 180)	B1	Condone $180 - 70 = 110$ o.e. (not spoilt)
(c)	70 - 37 attempted s.o.i. $AD = \frac{\text{their(a)}}{\sin 3}$ o.e.	M1 M1	e.g. 32 or 34 or 43, but be convinced. Dep. on first M1
	(AD=) their (a) x sin33 sin110 art 6.89 or 6.90 (cm)	M1 A1	Dep. on M2 Would imply M3 if nothing incorrect seen earlier. Condone 6.9 www4 Scale drawing gets M0A0
(d)(i)	70	B1	If not 70, ft for method in (ii), but not from 90 or60
(ii)	(ii) $(h =) \frac{\text{their(a)} \times \tan 55}{2} \text{ or } \frac{\text{their(a)}}{2 \times \tan 35}$ (8.497)		(EC or EA=) $\frac{\text{their(a)}}{2 \sin 35}$ or $\frac{\text{their(a)}}{2 \cos 55}$ (10.37)
	(area =) $0.5 \times \text{their}(a) \times \text{their}(h)$ o.e.		Dep. on first M1 (area =) 0.5 x EC x EA x sin70 or Hero's Method
	50.4 to 50.8 (cm ²)		www3 13
Q5(a)	$10/x \text{or} 10 \div x \qquad \qquad \text{o.e.}$	B1	Ignore all units in answers to Question 5. Not $x = 10/x$
(b)	$\frac{10}{x} - \frac{10}{x+1} = \frac{1}{2}$ o.e.	M2	Condone 30 for $\frac{1}{2}$ If M0 give Sc1 for $\frac{10}{x+1}$ s.o.i.
	20(x+1) - 20x = x(x+1) o.e.		Dep on M2. No longer condoning 30 o.e. Sc1 for $20x - 20(x + 1) = x(x + 1)$ o.e. after B1Sc1
	$x^2 + x - 20 = 0$		No error of any kind at any stage <u>and</u> sufficient working to convince you (at least 1 extra step)
(c)	(x+5)(x-4) (= 0)		$\frac{-1 \pm \sqrt{[1^2 - 4.1.(-20)]}}{2}$ No errors or ambiguities
	-5 <u>and 4</u> c.a.o.	A1	www2
(d)	Rejects negative solution 2.5 (hours) c.a.o.	R1 B1	May be explicit or implicit and could be in (c) Condone 2 hrs 30 (mins) or 150 mins

Page 3	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	4

Q6(a)(i)	$2 \times \pi \times 7^3 + \pi \times 7^2 \times 13$	M1	
	3 1384.7 to 1386 or 1380 or 1390 (cm ³)	A1	www2
(ii)	their(a)(i) x 0.94 1.3 (kg)	M1 A2√	√ ft their(a)(i) x 0.94 1000 www3 If A2 not scored, allow A1 √ for 1.30
(b)	(L =) $\sqrt{(13^2 + 7^2)}$ $\pi \times 7 \times \text{theirL}$ 324 to 326 (cm ²)	M1 M1 A1	Implied by √218 or 14.7 or 14.8 Dep. on first M1. www3
(c)	CSA of hemisphere= $2 \times \pi \times 7^2$ s.o.i. their(b) + their CSA 631.7 to 634 411.58 s.o.i. their total (\$)0.649 to 0.652 or 64.9 to 65.2 cents	M1 M1 A1 M1	307.7 to 308 if no working Dep. on first M1 Seen or implied by subsequent working. Dep. on a total www5 NB M1M1A0M1A1 is not possible.
Q7(a)(i)	Venn Diagram with 12, 8, 7, 3 or with $20 - x$, x , $15 - x$, 3	B2	-1 each error/omission. Condone lack of labels.
(ii) (iii)	$\begin{array}{c} 8 \\ \frac{12}{30} \end{array}$ o.e	B1√ B2√	ft their 8 on diagram, but not x ft (their 12)/30 from (i) or (ii) Sc1 for $k/30$ where $k < 30$
(iv)	12 20	B2 √	ft (their 12)/20 from (i) or (ii) if their 12<20 Sc1 for $m/20$ where $m < 20$
(b)(i)	3/9 x 4/10 12 o.e. c.a.o.	M1 A1	In all of Q7, accept fractions, decimals or %. Mark as ISW for wrong cancelling. Dec. or % need to be exact or accurate to 3 sf. No ratios. Other inappropriate notation is -1 once.
(ii)	1 - their(b)(i) 78 o.e. c.a.o.	M1 A1√	or $6/9 \times 6/10 + 6/9 \times 4/10 + 3/9 \times 6/10$ $\sqrt{\text{ft } 1 - \text{their (b)(i)}}$
(iii)	5/8 <u>or</u> 5/9 seen 6/9 x 5/8 x 6/10 x 5/9 seen <u>900</u> 6480 o.e. c.a.o.	M1 M1 A1	Allow a slip in 1 digit, but must use 4 fractions multiplied.
(iv)	p(4 blacks) 3/9 x 2/8 x 4/10 x 3/9 (=1/90) 1 - their(b)(iii) - their p(4 blacks) 5508 6480 o.e. c.a.o.	M1 M1 A1	Simplest 5/36 Alt. method. Must see all 14 combinations. Dep. on first M1. Must add them Simplest 17/20 17

Page 4	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	4

Q8(a)(i)	Rotation (only) 90 (anticlockwise)(about O) or ¼ turn	B1 B1	"only" no other transformation mentioned. Ignore all matrices, except in (v). Do not allow "turn" for rotation Accept 270 <u>clockwise</u> or -270
(ii)	Translation (only) $ \begin{pmatrix} -2 \\ -5 \end{pmatrix} $ o.e.	B1 B1	Not translocation, transformation, transportation. eg 2 to left and 5 down. Condone (-2 -5) and
(iii)	Reflection (only) $y = -x$ o.e	B1 B1	lack of brackets.
(iv)	. 180 (or ½ turn) Rotation (only) Centre (1, -1)	B1 B1	Enlargement sf= -1 earns B2 Sc1 for "Point Symmetry"
(v)	Enlargement (only) Scale Factor 2 (centre O)	B1 B1	Accept 2 0 for scale factor 2 0 2
(vi)	Shear (only) y axis invariant or parallel to y axis	B1 B1	Ignore any mention of scale factor.
(b)	В	B2	
(c)(i)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B2	Sc1 for a correct column
(ii)	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B2	Sc1 for a correct column 18
Q9 (a) (b) (c)	$15x + 25y \le 2000$ seen $y \le x$ o.e. c.a.o. $y \ge 35$ o.e. c.a.o.	B1 B2 B1	Allow $0.15x + 0.25y \le 20$ but no others. Sc1 for any other sign between x and y
(d)(i) (ii)	Scales correct and full length. 3x + 5y = 400 correct (1mm) at (0,80) and (100,20) and long enough.	S1 B2	Reversed scales S0 Sc1 for either point correct.
	y = x correct y = 35 correct	L1 L1	
	Shading correct (in or out)	B 1 √	$\sqrt{\mathbf{ft}}$ from slips in lines that do not compromise the idea of the triangle.
(e)	38 c.a.o.	B1	tompromise the race of the triangle.
(f)	Identifying any point(s) in their area	M1	
	(enclosed by 3 lines or 3 lines and 1 axis). (75, 35) s.o.i. c.a.o. (\$) 6.2(0) or 620 (cents)	A1 B1 √	Implies M1 √ ft their (75, 35) evaluated for whole numbers only. Condone lack of units but not wrong units.
			www3 14

